

SAMPLE PAPERS

MATHEMATICS (041)
SESSION 2025-26

FULLY SOLVED OFFICIAL CBSE SAMPLE PAPER issued on 30 July, 2025

15 FULLY SOLVED SAMPLE PAPERS BASED ON LATEST PATTERN

10 UNSOLVED SAMPLE PAPERS WITH VIDEO / PDF SOLUTIONS

13 PDF SOLVED SAMPLE PAPERS AVAILABLE THROUGH QR CODE

FREE PDF ACCESS TO LAST 15 YEARS

CBSE SOLVED PAPERS ON theopgupta.com

O.P. GUPTA

INDIRA AWARD WINNER

For CBSE 2026 Board Exams - Class 12

a compilation by O.P. GUPTA **INDIRA AWARD WINNER**

General Instructions: Same as given in PTS-01.

SECTION A

	tion numbers 01 to 20 vings are multiple c i) carry 1 mark each.) hoice questions . Sele	ect the correct option i	n each one of them.	
		$\begin{bmatrix} 2 & 0 \end{bmatrix}$	「1 −8 -	,	
01.	The order of the matr	Fix A such that $\begin{bmatrix} 2 & 0 \\ 1 & 0 \\ 3 & 4 \end{bmatrix}$	$A = \begin{vmatrix} 1 & -2 \end{vmatrix}$, is		
		<u>[</u> 3 4]	9 2		
	(a) 2×3	(b) 3×2	(c) 2×2	(d) 2×1	
02	If A is a serious model	f d 2 1. 4h - t	$\begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$	0 41 - 1 1	
02.	II A is a square matri	x of order 3 such that	$\begin{bmatrix} 9 & 2 \end{bmatrix}$ (c) 2×2 (d) 2×1 $A(adj.A) = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} $ then, $ A = $		
	(a) 8	(b) -2	(c) -8	(d) -3	
03.	Let $\vec{a} = \alpha \hat{i} + 3\hat{j} - 6\hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} - \beta \hat{k}$. If \vec{a} and \vec{b} are collinear vectors then, the value of $(\alpha + \beta)$ is				
	(a) -6	(b) -2	(c) -8	(d) 12	
04.	(a) -6 (b) -2 (c) -8 (d) 12 The greatest integer function defined by $f(x) = [x]$, $0 < x < 2$ is not differentiable at $x = x = 1$				
	(a) 0	(b) $\frac{1}{2}$	(c) 1	(d) $\frac{3}{4}$	
05.	$\int e^x \left(\log \sqrt{x} + \frac{1}{2x} \right) dx =$				
	(a) $e^x \times \log x + C$	(b) $e^x \times \log \sqrt{x} + C$	(c) $e^x \times \frac{1}{2x} + C$	(d) $\frac{e^x}{\log \sqrt{x}} + C$	
06.	The number of arbitrary constants in the particular solution of a differential equation of second order is (are)				
	(a) 0	(b) 1	(c) 2	(d) 3	
07.	The objective function of a linear programming problem, is				
	(a) a constant(c) an inequality		(b) a linear function to be optimized(d) a quadratic expression		
08.	The length of the perpendicular drawn from the point $(4, -7, 3)$ on the y-axis is				
	(a) 3 units	(b) 4 units	(c) 5 units	(d) 7 units	
09.	$\int_{1}^{c} \frac{\log x}{x} dx \text{ is equal to}$)			
	(a) $\frac{e^2}{2}$	(b) 1	(c) $\frac{1}{2}$	(d) −∞	
			-		

	(a) 3	(b) 0	(c) l	(d) -1		
11.	The corner points of the feasible region determined by the system of linear inequalities are $(0,0)$, $(4,0)$, $(2,4)$ and $(0,5)$. If the maximum value of $z = ax + by$, where $a, b > 0$ occurs at					
	both (2,4) and (4,	(0), then				
	(a) $a = 2b$	(b) $2a = b$	(c) $a = b$	(d) 3a = b		
12.	The matrix $\begin{bmatrix} 2 & -1 & 3 \\ \lambda & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for					
	-1	1 4				
				(d) $\lambda \in R - \{1\}$		
13.	Let $A = [a_{ij}]$ be a 2×2 matrix whose elements are given by $a_{ij} = (i)^2 - j $. Then $a_{12} + a_{22} =$					
	(a) 3	(b) 2	(c) 1	(d) -1		
14.	Integration factor for differential equation $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$, is					
	(a) $2\sqrt{x}$	(b) $e^{2\sqrt{x}}$	(c) $e^{\sqrt{x}}$	(d) $e^{-2\sqrt{x}}$		
15.	(a) $2\sqrt{x}$ (b) $e^{2\sqrt{x}}$ (c) $e^{\sqrt{x}}$ (d) $e^{-2\sqrt{x}}$ If A and B are two independent events with $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{4}$, then $P(B' A)$ is equal to					
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) 1		
	4	3	4			
16.	The function $f(x) = \frac{x-1}{x(x^2-1)}$ is discontinuous at					
	(a) exactly one point		(b) exactly two	(b) exactly two points		
	(c) exactly three points		(d) no point	(d) no point		
17.	How many reflexive relations are possible in a set A, whose $n(A) = 3$?					
	(a) 2^3	(b) 2^4	(c) 2^5	(d) 2^6		
18.	A point P lies on the line segment joining the points $(-1, 3, 2)$ and $(5, 0, 6)$. If x-coordinate of P					
	is 2, then its z-coo	ordinate is	_			
	(a) -1	(b) 4	(c) $\frac{3}{2}$	(d) 8		
Follor	vinge ara Accort	ion-Reason based	2			
In the f	following questions, the correct answer	a statement of Assertion out of the following choice	(A) is followed by a ices.	statement of Reason (R).		
	(a) Both A and R are true and R is the correct explanation of A.(b) Both A and R are true and R is not the correct explanation of A.					
	(c) A is true but R (d) A is false but F	is false.	correct explanation	0171.		
19.	Assertion (A): Let $X = \{1, 2, 3\}$ and $S: X \to X$ such that $S = \{(1,1), (2,2), (3,3), (1,2)\}$.					
	Then, the relation S is a reflexive relation on X.					
	Reason (R) : A relation S defined in a set X is called symmetric relation, if $(a,b) \in S$ implies					
	$(b,a) \in S$ for all $a, b \in X$.					
20.	Assertion (A): The position vectors of two points A and B are respectively $\overrightarrow{OA} = 2\hat{i} - \hat{j} - \hat{k}$					
	and $\overrightarrow{OB} = 2\hat{i} - \hat{j} + 2\hat{k}$. The position vector of a point P which divides the line segment joining A					
	and B in the ratio	2:1 is $\overrightarrow{OP} = 2\hat{i} - \hat{j} + \hat{k}$				

Reason (R): For vectors \vec{a} and \vec{b} , scalar product is defined as $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \sin \theta$, where θ is the angle between the vectors \vec{a} and \vec{b} .

SECTION B

(Question numbers 21 to 25 carry 2 marks each.)

21. Find the value of $\sin^{-1} \left[\sin \left(-\frac{17\pi}{8} \right) \right]$.

OR

Find range of the function $f(x) = \tan^{-1} x + \frac{1}{2} \sin^{-1} x$.

- 22. The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm?
- 23. Show that $|\vec{a}| |\vec{b} + |\vec{b}| |\vec{a}|$ is perpendicular to $|\vec{a}| |\vec{b} |\vec{b}| |\vec{a}|$, for any two non-zero vectors \vec{a} and \vec{b} .

OR

Find the vector and Cartesian equations of the line which passes through the point (3, 4, 5) and is parallel to the vector $2\hat{i} + 2\hat{j} - 3\hat{k}$.

- 24. If $y = e^x + e^{-x}$, then show that $\frac{dy}{dx} = \sqrt{y^2 4}$.
- 25. If $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio $\frac{\text{Projection of vector } \vec{a} \text{ on vector } \vec{b}}{\text{Projection of vector } \vec{b} \text{ on vector } \vec{a}}$.

SECTION C

(Question numbers 26 to 31 carry 3 marks each.)

- **26.** Find: $\int \frac{x^3 + 1}{x^3 x} dx$.
- 27. A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn randomly one-by-one without replacement and are found to be both kings. Find the probability of the lost card being a king.

OR

During the Annual School Fair, a **Lucky Draw** game is organized. A box contains 5 red, and 7 black balls. A student picks two balls one after another without replacement.

Prizes are awarded as follows.

- Red ball → Chocolate hamper
- White ball → Stationery kit
- Black ball → Storybook

If the first ball drawn is red, what is the probability that the second ball is also red?

28. Evaluate: $\int_{-1}^{5} (|x| + |x+1| + |x-5|) dx$.

OR

Find the value of $\int_{0}^{1} \tan^{-1} \left(\frac{1-2x}{1+x-x^2} \right) dx$.

29. Solve the differential equation: $(x^2 - y^2) dx + 2xy dy = 0$, x > 0.

OR

Find the particular solution of the differential equation

$$\cos y \, dx + (1 + e^{-x}) \sin y \, dy = 0$$
, given that $y = \frac{\pi}{4}$ when $x = 0$.

- 30. Solve the following Linear Programming Problem graphically: Maximize Z = 30x + 20y subject to $1.5x + 3y \le 42$, $3x + y \le 24$, $x \ge 0$, $y \ge 0$.
- Find: $\int \frac{2x+1}{\sqrt{3+2y-y^2}} dx$. 31.

SECTION D

(Question numbers 32 to 35 carry 5 marks each.)

If $A = \begin{vmatrix} 1 & 2 & -3 \\ 3 & 2 & -2 \\ 2 & -1 & 1 \end{vmatrix}$, then find A^{-1} and use it to solve the system of the linear equations 32.

given as: x + 2y - 3z = 6, 3x + 2y - 2z = 3, 2x - y + z = 2.

Evaluate the product AB, where
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$.

Hence solve the system of linear equations: x - y = 3, 2x + 3y + 4z = 17, y + 2z = 7.

33. Find the shortest distance between the following lines and hence write whether the lines are intersecting or not.

$$\frac{x-1}{2} = \frac{y+1}{3} = z$$
, $\frac{x+1}{5} = \frac{y-2}{1}$, $z = 2$.

Show that the lines
$$\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$$
 and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$ intersect.

Also, find the coordinates of the point of intersection.

- 34. Find the points of local maxima and local minima, of the function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$. Also find the local maximum and local minimum values.
- Find the area of the region bounded by the curves $x^2 + y^2 = 4$, $y = \sqrt{3}x$ and x-axis in the first 35. quadrant.

SECTION E

(Question numbers 36 to 38 carry 4 marks each.)

This section contains three Case-study / Passage based questions.

First two questions have three sub-parts (i), (ii) and (iii) of marks 1, 1 and 2 respectively. Third question has two sub-parts of 2 marks each.

36. **CASE STUDY I:** Read the following passage and the answer the questions given below.

ONE - NATION ONE - ELECTION

FESTIVAL OF DEMOCRACY

GENERAL ELECTION - 2019

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever.

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows.

 $R = \{(V_1, V_2): V_1, V_2 \in I \text{ and both use their voting right in general election - 2019}\}$.

(i) Two friends X and $Y \in I$.

X and Y both exercised their voting right in the general election - 2019.

Then, state if $(X, Y) \in R$ is true or not. Give reason.

(ii) Mr. 'H' and his wife 'W' both exercised their voting right in general election - 2019.

Then, state if the following statement is true or not. Give reason.

"If $(H, W) \in R$ then, we may or may not have $(W, H) \in R$."

(iii) Check if R is reflexive or, symmetric. Give reasons to support your answer.

OR

(iii) Mr. Ghanshyam exercised his voting right in general election - 2019.

While his brother (having voting right), Mr. Radheshyam went to have fun at a nearby mall.

Can we have (Ghanshyam, Radheshyam) ∈ R? Give reason.

If Miss. Radhika (having voting right) goes with Mr. Radheshyam to the mall skipping the voting exercise, then is it correct to say (Radhika, Radheshyam) ∉ R? Give reason.

37. CASE STUDY II: Read the following passage and answer the questions given below.

A survey was conducted among Class 12 students of a school to analyze how the choice of main subject affects performance in board exams.

The data collected shows : 40% students opted for Mathematics, 35% for Biology, and 25% for Commerce.

The probability that a student scores more than 90% in the board exam is

- 0.7 if the student opted for Mathematics
- 0.5 if the student opted for Biology
- 0.4 if the student opted for Commerce

Now, a student is selected at random from the class.

- (i) Find the probability that the selected student scored more than 90%.
- (ii) What is the probability that a student scoring above 90% had opted for Mathematics?
- (iii) Find the probability that a student who did not score above 90% had opted for Biology.

OR

- (iii) If two students are selected at random (with replacement), find the probability that both of them scored above 90%.
- **38.** CASE STUDY III: Read the following passage and answer the questions given below.

A mobile company in a town has 500 subscribers on its list and collects fixed charges of ₹ 300/-per subscriber per year.

The company proposes to increase the annual subscription and it is believed that for every increase of $\mathbf{7}$ 1/-, one subscriber will discontinue the service of this company.

- (i) If the mobile company increases \mathcal{T} x/-, then obtain the function R(x), which represents the earning of the company. Also, find R'(x).
- (ii) What increase will bring maximum earning for the company? Use second derivative test.

Buy MATHMISSION Refresher Books & SAMPLE PAPERS by O.P. GUPTA

■ MATHMISSION FOR X. XI & XII

- Detailed Theory & Formulae
- Vast no. of Examples
- Exercise
 - ✓ Subjective Questions
 - ✓ Multiple Choice Questions
 - ✓ Assertion-Reason Questions
 - ✓ Case-Study Questions
- Direct Answers
- ① **Solutions** of Mathmission books are also available **separately**.

■ SAMPLE PAPERS FOR X, XI & XII

- Solved Sample Papers issued by CBSE for Board Exams 2026
- Plenty of Solved Sample Papers developed by our Experts
- Unsolved Sample Papers with Answers for practice

Touch anywhere on this page to Buy your Books online OR WhatsApp @ 9650350480

If you need the **Solutions** of *this* **Question Paper** in the **MS Word / PDF format**, do contact us on **WhatsApp** @ **+91 9650350480**.

Note that, it will require a nominal Payment.

 \square For more sample papers, you can refer the book - CBSE 39 SAMPLE PAPERS for Class 12.

① Sample Papers / Topic Tests / MCQ / Case-Study are available for Classes XII, XI & X Mathematics.

MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

Feel Safe to Share this Document with other math scholars

CLICK NOW

Download

or, just type theopgupta.com

FREE PDF TESTS AND **ASSIGNMENTS OF THE CLASSES XII, XI & X**

To get FREE PDF Materials, join **WhatsApp Teachers Group** by Clicking on the Logo

You can add our WhatsApp no. +919650350480 to your Groups also

Click on the **Book cover** to buv!

If you are a Student, then you may join our Students Group

CLICK HERE FOR **CLASSES** XI & XII

O.P. GUPTA

Mathmission

Many Direct Questions from our Books have been asked in the recent CBSE Exams

ATHMISS

2025-26 Edition

Buy our books on

amazon **Flipkart**

ABOUT THE AUTHOR

O.P. GUPTA having taught math passionately over a decade, has devoted himself to this subject. Every book, study material or practice sheets, tests he has written, tries to teach serious math in a way that allows the students to learn math without being afraid. Undoubtedly his mathematics books are best sellers on Amazon and Flipkart. His resources have helped students and teachers for a long time across the country. He has contributed in CBSE Question Bank (issued in April 2021). Mr Gupta has been invited by many educational institutions for hosting sessions for the students of senior classes. Being qualified as an electronics & communications engineer, he has pursued his graduation later on with mathematics from University of Delhi due to his passion towards mathematics. He has been honored with the prestigious INDIRA AWARD by the Govt. of Delhi for excellence in education.

MOST REPUTED MATHEMATICS BOOKS

CLASS 12

MATHMISSION & SOLUTIONS

CLASS 11

CLASS 10

Our All-inclusive Refresher-guide Feature

- **⊘** Theory & Examples
- **⊗** Subjective Questions
- **Multiple Choice Questions**
- Assertion Reason Questions
- **⊗** Case Study Questions
- **⊗** Answers
- **⊘** Detailed Solutions
- **⊘** QR-Codes for more Resources

SAMPLE PAPERS TRUSTED

Our popular Sample Papers Guides feature

- Official CBSE Sample Papers with Solutions
- Plenty of Fully Solved Sample Papers
- Unsolved Sample Papers for Practice

CBSE Board Papers, Sample Papers, Topic Tests, NCERT Solutions & More..

💮 theopgupta.com

BUY OUR MATHS BOOKS ONLINE

ALSO AVAILABLE ON

Do You Have Any Queries Regarding Maths? | +919650350480 (Message Only)

Feel free to contact us

For Math Lectures, Tests, Sample Papers & More Visit our YouTube Channel

MATHEMATICIA By O.P. GUPTA

